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INTRODUCTION 

As well known, certain characteristic molecular signatures possess identifiable details as regard 
to their level of activities towards genomic and/or proteomic functions in cells. Such unique 
features of cells are designated and identified as biomarkers. They refer to naturally occurring 
molecule, gene or characteristic by which a particular pathological or physiological process can 
be identified. Such biomarkers typically include a range of biochemical entities such as, nucleic 
acids, proteins, sugars, lipids, small metabolites, etc.; and, they are recognized as possible 

objective measures with proven diagnostic evaluations on 
normal, pathological and pharmacological processes 
enabling efficacious therapeutic interventions towards 
clinical management of diseases (like cancer) [1-6]. 
Ascertaining the presence of biomarkers in humans is a part 
of genome sequecing exercise, which was initially started to 
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solve the algorithms specific to the four-letters A, G, C, T (depicting the nucleotides  adenine 
(A), guanine (G), cytosine (C) and thymine (T) respectively) of the genome so as to understand 
the complex nature of human metabolism [7]. Artifacts in biomarkers could possibly exist as 
comingled items, for example, as purine and pyrimidine residues across trans- splice-junctions 
of biosequences. Such purines and pyrimidines are building blocks of the nucleic acids (DNA and 
RNA). They serve as second messengers for signal transduction pathways and nucleotide sugar 
donors in metabolic pathways. The purines refer to the nucleotide pair: (A) and (G) and, 
pyrimidine correspond to the pair (C) and (T). These are found primarily in DNA; and, uracil (U) 
is seen in RNA replacing (T).  
 
Suppose such pairs of biomarkers (depicting stretches of purine plus pyrimidine residues) exist 
across trans- splice-junctions of biosequences of human test subjects (identified with and 
without pathogenic states, (like cancer). The study proposed here envisages simulation 
experiments to assess objectively the relative infestations of purine and pyradimine residues 
present in the trans- splice-junction; and, hence find relevant ratio of purine and pyrimidine (rP-
P) data correlated to two situations, one for the test subject having no pathogenic condition 
(say, cancer) and the other for an affirmed cancerous state. Such studies relating purine-
pyridimine vis-à-vis development of tumors for example is addressed in [8]. In view of the 
considerations in correlating purine-pyridimine details  versus presence of cancer, the effort 
pursued here refers to an in silico study of simulating ensembles of artificially-mutated purine 
plus pyrimidine stretches at trans-splice-junctions of test human biosequences. Hence, similar 
and/or dissimilar signatures of purine-pyridimine infestations at the focused site with and 
without mutational polymorphism are determined; and, in terms of observed statistics, 
pertinent, differential rP-P features  are estimated. The level of rP-P implying similar and/or 
dissimilar signatures of purine-pyridimine infestations, is expressed in terms of a compatible 
informatic (negentropic) measure of statistical divergence; and,  the statistical distance so 
estimated is then correlated to the feasibility of presence or absence of any observable 
pathogenic state.  

 
Background Details 

Studies in recent years on cancer biomarkers have increased the efficiency of detection and 
efficacy of treatment plus management of cancer. Advancements in such efforts include 
identifying potential biomarkers; and, specific biomarkers of cancer-related interests include a 
wide range of biochemical entities such as, nucleic acids, proteins, sugars, lipids and small 
metabolites, cytogenetic and cytokinetic parameters as well as, whole tumor cells found in body 
fluids. A comprehensive understanding of the relevance of each biomarker is necessary not only 
towards diagnosing the disease reliably, but also in finding compatible therapeutic regimens. 
Various biomarkers considered in practice for diagnosis, prognosis and therapeutic purposes and 
those already studied and identified in [1,8].  

The scope of present study is to use the statistical profiles of a class of biomarkers ( purines and 
pyridimines) as objective sample-space and the underlying statistical divergence measure is 
suggested towards making diagnostic decisions on the presence or absence of cancerous state. 
That is, surmised here is that the infestation of a distinct set of biomarkers at specific genomic 
sites can provide observable distinction between the signatures in the biomarker frameworks. 
Relevant characteristic distinction can be regarded as an indication of the presence or absence 
of pathogenic state. That is,  proposed here is that the possible differences observed in the 
signature profiles (of specified regions of genomic and/or proteomic residues) could be  due to 
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normal and diseased states; and, the underlying theme of the study thereof refers to following: 
Distinguishing statistical profiles of biomarkers in the sequences of subjects can lead to a robust 
assertion of normal and diseased states. As stated earlier, for simulation purposes, the 
statistical details of purine and pyrimidine infestations at the splice-junctions in human 
genomes are considered. In parallel,  another sample-space of purine and pyrimidine 
infestations at the same splice-junctions (in human genomes) is framed  with artificially 
introduced artifacts in the profiles of purine-pyrimidine populations. Such deliberately 
introduced changes emulate “artificial mutations” and introduce (morphs) in the biomarker 
profile at the test sites implying implicit possibilities of pathogenic conditions. 

 
MATERIALS AND METHODS 

In view of central doma of microbiology, the non-coding (intron) segments present in the DNA 
strand (during transcription) get spliced out at splice-junctions  (that delineate adjacent exon-
intron or intron-exon segments in the sequence); as such, only exons possessing genetic 
information are retained in the resulting RNA strand  (with the base residue T in the codons 
changed to another base called uracil, U). Typically, the stretches of codon sites on either side 
of trans- splice-junctions, are infested with purine and pyridimine residues. Consistent with the 
objectives of this study, relevant focus is on relative rate of occurrence of purines versus 
pyrimidines at a splice-junction. Measures based on relative extents of infestation of  purines 
and pyrimidines across the splice-junction have been used in studies towards identifying the 
location of the splice-junction site in a genomic sequence [9]. 
 
Presently, the relative frequency of occurrence of purine and pyrimidines across the splice-
junction regions is considered; and, such regions of infestations (depicting purine-pyrimidine 
biomarkers) are viewed as two possible sample-spaces: One  without any coexisting mutations 
depicted as: X; and the other sample-space (indicated as Y) refers to the region of biomarkers 
having mutational changes on residues signifying pathogenic conditions. Hence, relevant in 
silico simulations pursued in this study involve: (i) Emulating the up- and down-stream regions 
at the splice-junction of a human genome with known percentages of purine and pyridimine 
residues prescribed as randomly mixed entities (depicting a stochastic mixture) [10] and it 
corresponds to X; (ii) constructing a similar framework with  (similar percentages of purine and 
pyridimine residues) except   that artificial mutations are randomly introduced as 
polymorphism on purine and pyridimine specific dinucleotide pairs in the stretches of purines 
and pyrimidines occurring bilaterally across the splice-junction regions; and,  such changes 
made via artificial mutations enable variations in the ratio of purine-to-pyrimidine (rP-P) 
residues; that is, emulation of Y conforms to a sample-space of biomarkers with a dispersion of 
random artefacts that can be eventually correlated to corresponding diseased states. A 
statistical comparison of associated (relative) entropy profiles of the test regions X and Y can be 
regarded as a diagnostic suite for deciding the diseased-state in question. Relevantly, the 
statistical distance (divergence)  between the characteristics of sample-spaces X and Y refers to 
the cross-entropy (in Shannon sense) that can be adopted  to distinguish the the features of 
compared sample-spaces as indicated in [11].  In summary, the efforts described in this study 
primarily address in silico simulations performed on emulated test regions: Sample-space, X 
representing infestation of purine and pyrimidine residues at a trans- splice junction (of  a 
genomic sequence of human-beings; and, sample-space, Y with designated “artificial 
mutations” introduced on purine and pyrimidine residues so as to resemble artefacts on 
biomarkers. Due to possible statistical variations that may inherently prevail between individual 
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subjects vis-à-vis residue levels of nucleotides, amino acids and proteins etc., it is suggested in 
this work that a number of ensemble sample-spaces representing pseudoreplicates of X and Y 
are simulated and prediction exercise in elucidating the statistical divergence is done on the 
average feature of pseudoreplicated ensemble spaces. 

 
Simulation Experiments 

As indicated before, X depicts the sample-space containing biomarkers constituted by stretches 
of purine-plus-pyrimidine residues across trans- splice-junctions of a test biosequences; and, 
the test space Y is mutated to exhibit artifacts in the biomarkers (implying a pathogenic state 
like, cancer). In general, the mutations indicated  denote disruptors of splicing region; for 
example, when they fall on either side of the splice-site, the consensus intronic dinucleotide 
splice donor, GT, or the splice acceptor, AG,  such splice site mutations are presumed to be 
invariably deleterious because of their disruption of the conserved sequences that identify 
exon-intron boundaries [12]. Consistent with the aforesaid heuristics, simulation exercises 
pursued here involve first identifying locations of splice-junctions in the test DNA sequence (for 
example of human genome). Relevant details on the sites of splice-junctions are confirmed 
through NCBI database results. A splice-junction so identified and used in simulation 
experiments of the present study refers to, for example, that located on Chr8 of the human 
genome at a distinct base-pair (bp). With reference to this site, a stretch of 1000 base-pairs (bp) 
is considered and the relative extents of the residues of purines and pyrimidines per 100 bp 
window are listed in Table 1 for both up- and down- streams. That is, summarized in Table 1, 
are details on the composition of purines-to-pyrimidines per 100 bp (window) for the full 
stretch of (1000 + 1000) bp on either sides of the splice-junction. Relevant proportions of 
purines and pyrimidines are specified in terms of percentages (% Pu and % Py) occurring in 20 
windows (Wi=1,2,…20), each window containing 100 bp of residues.  
 
With reference to the sample-spaces X and Y defined earlier, the comparative pursuit  refers to 
deciding the relative proportion of purine and pyridimine (expressed via ratio measure, rP-P 
mentioned earlier). As mentioned before, a more comprehensive metric can, however be 
specified so as to  decide the statistical-divergence between X and Y. Relevant metric duly 
accounting for the cross-entropic features of the associated populations (of purine and 
pyrimidine residues)  is based on probabilities of occurrence of purines and pyrimidines across 
the sample-spaces; and, it implies a mutual-information based decision on the distinguishability 
between statistical distributions of purines and pyrimidines in the test spaces. Essentially, it 
offers details on the underlying commonality or distinguishability in the information-theoretic 
sense. A number of such cross-entropy (or mutual information) metrics exists as detailed in 
[13,14] and, they have been adopted in bioinformatic studies concerning biosequences 
comparisons [15]. A popular measure thereof refers to the so-called Kullback-Leibler (KL) 
measure, which is adopted in the present study on the sample-spaces of purine-to-pyrimidine 
statistics. The underlying stochastic  distinguishability is framed in the information-theoretic 
sense as detailed in [16] vis-à-vis biological complexity observed in bioinformatics.   
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Table 1: Percentages of purines (Pu) and pyrimidines (Py) across 20 windows (Wi=1,2,…20) each 
containing 100 bp residues with 1000 bp in up- and 1000 bp in down-streams at a splice-
junction of a human genome 
 

Down-stream windows % Pu % Py 

W1: BP142839552 – 142839652 49% 51% 

W2: BP 142839652- 142839752 38% 62% 

W3: BP 142839752- 142839852 48% 52% 

W4: BP 142839852- 142839952 52% 48% 

W5: BP 142839952- 142834052 55% 45% 

W6: BP 142840052- 142840152  57% 43% 

W7: BP 142840152 - 142840252  57% 43% 

W8: BP 142840252 - 142840352  57% 43% 

W9: BP 142840352- 142840452 45% 55% 

W10: BP 142840452-142840552 46% 54% 

Up-stream windows 

W11: BP 142840552-142840652 54% 46% 

W12:  BP 142841652- 142841752 63% 37% 

W13: BP 142841752- 142841852 57% 43% 

W14: BP 142841852- 142841952 47% 53% 

W15: BP 142841952- 142842052 67% 33% 

W16:BP  142842052- 142842152 54% 46% 

W17: BP 142842152- 142842252 43% 57% 

W18: BP 142842252-  142842352 32% 68% 

W19:BP142842352-142842452 44% 56% 

W20:BP 142842452 -142842552 48% 52% 

 
Outlined in the following section are computational details  in using the aforesaid KL measure 
for the intended analysis of purine-pyridimine sample-spaces. 

                 
Computational Details 

Considering a test segment of DNA sequence containing mixed residues of purine plus 
pyrimidine residues, (for example,  as listed in Table 1), it is divided into 20 subsegments (or 
windows, Wi=1,2,…20  with each window denoting a receptacle for 100 bp residues as mentioned 
earlier. Suppose the probability of occurrence of purine is specified as “p(Pu)” and that of 
pyrimidine as “q(Py)”, they  correspondingly refer to percentages % Pu and % Py respectively 
seen in each window. That is, the prorated values of purine and pyrimidine contents per 
window as in Table 1, concomitantly refer to  p(Pu) and q(Py)  denoting respectively pertinent 
probabilities of occurrence of purine and pyridimine in each window of the test sample-space. 
Further, the residues in each ith window of the test sample-space depict a statistical mixture of 
purine and pyramidine populations; and, based on relative proportion of such purine and 
pyramidine residues in the mixture, the resultant mixture property (denoted as Qi) in each (ith) 
window can be ascertained via Lichtenecker-Rother algorithm [10] (based on logarithmic law of 
mixing). That is, for any arbitrary fractional level of purine, (0 ≤ Θi ≤ 1) and corresponding 
fractional level of pyridimine (1 – Θi),  in the binary mixture content (of ith window),  the 
mixture-theoretic model for Qi is given by the following Lichtenecker-Rother algorithm: 
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Qi = [p(Pu)Θi]i × [q(Py)(1- Θi)]i   …………………………..(1) 
 
Thus, the parameter Qi  in equation (1) implicitly denotes the resultant probabilistic attribute of 
the inclusions (namely, purine and pyramidine contents) present in the statistical mixture-state 
of the window. 
 
Further, with reference to purine versus pyrimidine population (in each window of the sample-
space), the  statistical divergence measure can be specified via Kullback-Leibler (KLi = KL1i + KL2i)  
formulation [13-15] as follows: 
 
KL1i = [p(Pu) × loge{p(Pu)/q(Py)}]I   nats  …………………….(2a) 
KL2i = [q(Pu) × loge{q(Py)/p(Pu)}]I   nats  …………………….(2b) 

 
In the present study, the simulation exercise as stated earlier involves constructing artificial 
sample-spaces (X and Y) for each window representing a receptacle containing a mixture of 
appropriately prescribed and prorated extents of purines and pyridimines (with or without 
mutations). Hence, each simulated window has a corresponding value of Qi  as decided by 
equation (1). Pertinent simulation steps in constructing the artificial sample-spaces as above 
are outlined below in the pseudocode. 
 
A pseudocode on simulating an artififial sample-spaces (depicting a set of windows, each 
representing mixture-medium of prorated contents of random extents of 100 bp of purines (Pu) 
and pyrimidines (Py). 
 
The stretch of Wi=1,2,…20 windows is constituted by 1000 bp of residues in up-stream plus 1000 
bp of residues in down-stream at a splice-junction in the human genome. There are two 
sample-spaces being simulated, X  (without any mutations enforced on  purines and pyridimine 
contents in each window) and, Y having ± 20 % mutations  randomly introduced  in the contents 
of purines and pyridimines across the windows. 
 
---------------------------------------------------------------- 
% The pseudocode outlines two parts of simulations:  

Part I refers to constructing the sample-space, X  
Part II refers to details on simulating sample- 
space, Y. 

----------------------------------------------------------------------- 
%%  Part I Constructing the sample-space,  X 
 
Initialization 
 
→ Step I.1: A stretch of twenty windows (Wi=1,2,…20 ) is framed with each window 

accommodating 100 bp of residues across ten up-stream and ten down-stream windows 
symmetrically specified at a splice-junction in a human genome. 

 
Assigning a Set of N = 10 Random Values of the Fraction, (0 ≤ Θi ≤ 1) for Each Window 
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→  Step I.1: A set of {(Θi)}n =1, 2, …, N = 10 is generated, each with (0 ≤ Θi ≤ 1) depicting a uniformly-
distributed random numbers and posted in ith window, Wi of the set, {Wi}i = 1, 2, …, 20.  

 
Framing an Ensemble of Ten Pseudoreplicates (via Bootstrapping) of each of the sets{(Θi)}n =1, 

2, …, N = 10  to Fill Each Window  
 
  → Step I.2: Considering the prescribed set of {(Θi)}n =1, 2, …, N=10 (as decided above) in each 

window of the set  {Wi}i= 1, 2, …, 20,  the contents of each set {(Θi)}n is shuffled via 
bootstrapping procedure [17][18] so as to get M = 10 pseudoreplicates; that is, each 
window now has M = 10 peudoreplicated sets {[(Θi)]n]}m=1, 2, …, M=10.  

 
 → In summary, for any ith window, a set of  M = 10 pseudoreplicated sets are formed 

each consisting of N =10  shuffled-values of Θi as listed below: 
 

 {(Θi)n =1, (Θi)n =2, …, (Θi)n =N=10}m = 1  

  {(Θi)n =1, (Θi)n =2, …, (Θi)n =N=10}m = 2 

   …. 
          {(Θi)n =1, (Θi)n =2, …, (Θi)n =N =10}m = M=10 

   
 →   That is, each ith  window holds a total of (N × M = 100)  Θi-values; and, 

corresponding mean fractions ΘiA and (1 – ΘiA) are calculated.          
 
Finding in each ith Window, the Ensemble Set of: {Qi}M×N and Its Mean Value (QAi) 
  
→ Step I.3: This step involves finding possible  (N × M = 100) values of Qi using equation (1) for 

each ith window with (0 ≤ Θi ≤ 1), corresponding (1 −  Θi) values and the pair [p(Pu)]i and 
[q(Py)]I taken from Table 1. For example, with reference to W1 : BP142839552 – 142839652, 
p(Pu)  is equal to 0.49 (49 %) and q(Py)  refers to 0.51 (51 %).  

 
 → That is, for any ith window and the associated pair of values [p(Pu)]i and [q(Py)]i availed 

from Table1, the mean fractions ΘiA and (1 – ΘiA) ascertained earlier are applied in the 
relation of equation (1) to get: 

 
QiA= ([p(Pu)]i)ΘiA × ([q(Py)]i)(1- ΘiA)   ………………………..(3) 

 
Estimating KL Values: (KLi)MN for Each Window 
 
→ Step I.4: The ratio of mean fractions [ΘiA /(1 – ΘiA)] is determined for each window and it 

denotes the relative extents of purine-to-pyrimidine population in the artificial sample-
space being simulated. 

 
 → In terms of [ΘiA/(1 – ΘiA)], the associated rP-P  can be implicitly specified via mean-value 

formulation of statistical divergence, (KLiA = KL1iA + KL2iA) deduced from equation (2) as 
follows:  

 
 KL1iA = [ΘiA × loge{ ΘiA /(1 – ΘiA)}]i        nats    (4a) 
 KL2iA = [(1 – ΘiA)× loge{(1 – ΘiA)/ΘiA }]i   nats    (4b) 
----------------------------------------------------------------------- 
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%%  Part II Constructing the sample-space,  Y 
 
Initialization 
 
% The procedures of Steps I.1 through I.4 of Part I simulations are repeated with a fresh set of 
random variables of (0 ≤ Θi ≤ 1) and framing corresponding pseudoreplicates; and, a change is 
included to introduce mutations so that the emulated sample-space corresponds to, Y as 
detailed below: 
 
→ Step II.1: The set of percentages of purines (Pu) and pyrimidines (Py) across 20 windows 

(Wi=1,2,…20) is considered (as per details in Table 1) and modified with a random change  (say, 
to a maximum extent of ± 20 %) to depict the mutational changes. Shown below in Table 2, 
is an exemplar of such modified data set 

 
Table 2: Percentages of purines and pyrimidines across 20 windows (Wi=1,2,…20) each containing 100 bp 
residues with 1000 bp in up- and 1000 bp down-streams at a splice-junction of a human genome with 
and without random changes for artificially imposing mutations 

 

Without random mutations 
(Table 1 values) 

 With random mutations (of ± 
20 % on Table 1 values) 

Down-stream windows 

                    % Pu % Py  % Pu % Py 

W1: 49% 51% 54% 56% 

W2: 38% 62% 34% 60% 

W3: 48% 52% 53 % 47% 

W4: 52% 48% 47% 54% 

W5: 55% 45% 60% 49% 

W6: 57% 43% 59% 48% 

W7: 57% 43% 58% 38% 

W8: 57% 43% 62% 48% 

W9: 45% 55% 43% 57% 

W10: 46% 54% 50% 58% 

Up-stream windows 

W11: 54% 46%  51% 49% 

W12: 63% 37% 59% 42% 

W13: 57% 43% 54% 44% 

W14: 47% 53% 41% 55% 

W15: 67% 33% 70% 36% 

W16: 54% 46% 56% 49% 

W17: 43% 57% 49% 59% 

W18: 32% 68% 35% 63% 

W19: 44% 56% 40% 50% 

W20: 48% 52% 42% 55% 
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Next 
 
→  Step II.2: With the values of [p(Pu)]i and [q(Py)]i  in Table 3 modified to include random 

mutations  to an extent of  ± 20 % changes (on Table 1 values) are considered.   
 

→ Then Steps I.3 through I.4 are exercised with mutated data on [p(Pu)]i and [q(Py)]i   plus 
the fresh set of random variables of (0 ≤ Θi ≤ 1) and corresponding pseudoreplicates  
 
→ Hence, details as listed in Table 3 are obtained via relevant computions of KLiA-values 

for the sample spaces X and Y  
 
RESULTS AND DISCUSSIONS 

In all,  a statistically-implied artificial sample-space of  purine-pyridimine infestation across up- 
and down streams at a splice-junction in a human genomic sequence is  simulated. This 
simulation conforms to real-world data on percentages of purines and pyrdimines as in Table 1; 
and, the artificial sample-space constructed is rendered statistically robust inasmuch as, the 
residue infestations prescribed therein duly assume required probabilistic attributes via random 
variables, Θi and (1 – Θi). These random variables are uniformly-distributed in conformance with 
Lapalace’s hypothesis on unspecified/unknown probabilistic distributions. Further, by simulating a 
set of 100 pseudoreplicated ensembles of Θi and (1 – Θi), their  mean values of ΘiA and (1 – ΘiA) 
are ascertained; and, a relevant   estimation of statistical divergence namely,  the KL-measure, KLiA  

is done  for each ith window.  

Table 3: Computed KLiA-value for each window of 100 bp length across up- and down-stream 
stretches of (1000 + 1000) bp bilateraly placed at the splice-junction located on Chr8 of the 

human genome at base-pair (bp) 142839552 
 

 
 

Wi 

KLiA value 
(in nats) 

Without random 
mutations 

(Table 1 values) 

With 
random mutations 

(of ± 20 %  on 
Table 1 values) 

Upstream 

W1 0.0008 0.0007 

W2 0.1175 0.1477 

W3 0.0032 0.0072 

W4 0.0032 0.0097 

W5 0.0201 0.0222 

W6 0.0395 0.0227 

W7 0.0395 0.0846 

W8 0.0395 0.0358 

W9 0.0200 0.0396 

W10 0.0128 0.0119 

Downstream 

W11 0.0128 0.0008 

W12 0.0138 0.0578 
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W13 0.0395 0.0205 

W14 0.0072 0.0411 

W15 0.2407 0.2261 

W16 0.0128 0.0093 

W17 0.0395 0.0186 

W18 0.2714 0.1646 

W19 0.0289 0.0223 

W20 0.0066 0.0351 

 

Relevant domain simulated to a sample space-space X; and, a corresponding sample-splace (Y) is 
also constructed with changes to include specified extents of mutations in purine-pyridimine 
populations.  Hence the KL-values for the spaces X and Y are determined as listed in Table 3 and 
plotted in Figure 1, against window numbers. 

In summary, the simulation and computational efforts and results obtained as outlined above 
correspond to: (i) Constructing an artificially-simulated (statistical) sample-space depicting the 
mixture property of test residues namely, purine and pyridimine; (ii) relevant property is rendered 
to conform a set of pseudoreplicated Q-values depicting the mixture-theoretic profile of a 
unbiased blend of test residues; (iii) using average of pseudoreplicated Q-values (in each test 
window), the associated statistical divergence measure is ascertained and expressed as, KLiA 
depicting the Kullback-leibler measure. It specifies the statistical distance between the infestation 
statistics of purine versus pyridimine; and, it is implicitly tied to the rP-P of purine-pyridimine 
residues  in the sample-space. (iv) The artificially-generated test sample-space at the splice-site 
(representing a mixture with random inclusions of purines and pyridimine contents), is further 
mutated (artificially) by altering the infestation levels of associated purine-pyridimine contents by 
randomly introducing, ± 20 % changes;  and, corresponding KLiA values are obtained as listed in 
Table 3. (v) The deduced KL-measures versus window-sites at the splice-junction are illustrated in 
Figure 1, where the curves denote the mean KLiA values as listed in Table 3. The demarcation line 
of splice-junction is also indicated in Figure 1. 

Inferential Remarks and Closure 

The simulation exercises addressed in this study and results obtained thereof conform to 
establishing required statistical profiles of purine-pyridimine infestations at the splice junction in a 
huan gnomic sequence asper the details in Table 1. Similar trans- splice junction features due to 
associated residue profiles in genomic sequences are also addressed, for example, in [16,19-22].  
Pertinent studies have focused on finding  precisely, the delineating exon-intron (or intron-exon) 
segments. For example, the Shapiro–Senapathy (S & S) algorithm of [21,22] enables predicting 
splice-sites, exons and genes in animals and plants and  they are indicated towards discovering 
disease-causing mutations (existing at the splice-junctions). Relevant platforms are compatible in 
modern clinical bioinformatics in terms of  diagnostic and therapeutic tasks of Next Generation 
Sequencing (NGS) technology [15].  
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Figure 1: Computed values of average KLiA divergence (in nats) of Table 3 versus window segment 
numbers plotted across up- and down-streams at the splice junction located on Chr8 of the human 
genome at base-pair (bp) 142839552. (a): Curve regressed on KL-values calculated having no mutational 
changes in the percentages of purines and pyrimidines present; and,  (b): curve regressed on KL-values 
calculated with ± 20 % mutational changes (as in Table 3) in the percentages of purines and pyrimidines 
present. 

 

Further, considering the results of the present study, they enable  predicting the site of genomic 
splice-junction in terms of observable, abrupt changes in the composition of residues present in 
the vicinity of the splice-site. Suppose a normal infestation of residues (say, purines and 
pyridimine) exists, the location site of the splice-junction distinctly delineates up- and down-
stream regions of windows, (each representing a segmented, 100 bp width of residues) in 
concurrence with the details of [16,20-22].  Further, with reference to the scope of the present 
study, it is surmised that the presence of any mutational changes in the residues (expressed in 
terms of the ratio of purines-to-pyridimine popupation) at trans-splice regions, could show 
characteristic morphs across delineating features (at the splice-site).  

The noticeable changes (as in Figure 1) can be specified as follows: (i) With imposed mutational 
changes, the splice-site is no longer abrupt and precisely demarceted; but, it is seen smeared and 
‘fuzzy” [23,25]. (ii) Such fuzzy-splicing in genomic sequences could be indicative of aberrant splice-
junctions reflecting  the contexts of diseased conditions. (iii) Hence, the mutated purine-
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pyridimine residues at the splice-site is proposed here as biomarkers towards specifying a 
pathogenic state (say, for example, cancer). (iv) That is, any observed artefacts in the location 
(being abrupt, fuzzy or shited) of the splice-site could refer to a diseased state with purine-
pyridimine specified as biomarkers; that is, disease-causing mutations in the infested purine-
pyridimine residues (at the splice-junctions) can be identified as proposed here as a relevant suite 
viably adopted in clinical/translational bioinformatics towards underlying diagnostic and 
therapeutic endeavors.  

Fundamental considerations on splice-junction specific site  residue characterization in terms of 
cross-entropy properties can be seen in [26].      

 

Conclusion 

Though the present study refers to in silico schemes illustrated with artificially-simulated sample-
space of biomarkers, the underlying  approach can be pursued in NGS  exercises of translational  
base-pair to bed-side efforts of clinical diagonosis. Such studies can lead to discovery of genes 
causing inherited disorders in terms of associated biomarkers. Specific mutations in different 
splice sites present in various genes that could cause inherited disorders for example, Type 1 
diabetes, hypertension, marfane syndrome, cardiac diseases, eye disorders etc. can be analyzed 
by the proposed method. Understanding how real-world mutations affect splice-junction 
composition of biomarkers can lead to promising researching in the future.   
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